Com o auxílio do instrumento MUSE montado no Very Large Telescope do ESO, no Chile, e do Telescópio Espacial Hubble da NASA/ESA, os astrónomos fizeram o teste mais preciso, executado até à data, da teoria da relatividade geral de Einstein fora da Via Láctea.
A galáxia próxima ESO 325-G004 atua como uma forte lente gravitacional, distorcendo a radiação emitida por uma galáxia distante situada por trás dela e dando origem a um anel de Einstein em torno do seu centro.
Ao comparar a massa da ESO 325-G004 com a curvatura do espaço em sua volta, os astrónomos descobriram que a gravidade a estas escalas astronómicas se comporta como previsto pela relatividade geral, eliminando assim algumas teorias de gravidade alternativas.
Com o auxílio do instrumento MUSE montado no VLT do ESO, uma equipa liderada por Thomas Collett, da Universidade de Portsmouth no Reino Unido, calculou a massa da ESO 325-G004 ao medir o movimento das estrelas no seio desta galáxia elíptica próxima.
Collett explica “Usámos dados obtidos pelo Very Large Telescope do ESO, no Chile, para medir quão rapidamente as estrelas se estavam a mover na ESO 325-G004, o que nos permitiu inferir a quantidade de massa que deve existir na galáxia para manter estas estrelas em órbita.”
Por outro lado, a equipa conseguiu também medir outro aspecto da gravidade. Com o Telescópio Espacial Hubble da NASA/ESA, observou-se um anel de Einstein, um fenómeno que resulta da luz de uma galáxia distante estar a ser distorcida pela ESO 325-G004. A observação deste anel permitiu aos astrónomos medir como é que a luz, e consequentemente o espaço-tempo, está a ser distorcida pela enorme massa da ESO 325-G004.
A teoria da relatividade geral de Einstein prevê que os objetos deformem o espaço-tempo em sua volta, fazendo com que a luz que passa por ele seja desviada e dando origem a um fenómeno conhecido por lente gravitacional. Este efeito apenas se torna evidente para objetos muito massivos. São conhecidas algumas centenas de lentes gravitacionais fortes, mas muitas estão demasiado distantes para se medir com precisão as suas massas. No entanto, a galáxia ESO 325-G004 constitui uma das lentes mais próximas de nós, situada a apenas 450 milhões de anos-luz de distância da Terra.
Collett continua “Com dados obtidos pelo MUSE determinámos a massa da galáxia situada em primeiro plano e com o Hubble medimos a quantidade de efeito de lente gravitacional observado. Seguidamente comparámos estas duas maneiras de medir a força da gravidade — e o resultado foi exatamente o previsto pela relatividade geral, com uma incerteza de apenas 9%. Trata-se do teste mais preciso feito à relatividade geral fora da Via Láctea realizado até à data. E usámos apenas uma galáxia!”
A relatividade geral foi testada com muita precisão às escalas do Sistema Solar e alguns trabalhos observaram estrelas no centro da Via Láctea, mas até à data não tinha havido testes precisos para escalas astronómicas maiores. Testar o longo alcance das propriedades da gravidade é vital para validar o atual modelo cosmológico.
Esta descoberta pode ter implicações importantes para os modelos de gravidade alternativos à relatividade geral. Estas teorias alternativas prevêem que os efeitos da gravidade na curvatura do espaço-tempo são “dependentes da escala”, o que significa que a gravidade se deveria comportar de maneira diferente a escalas astronómicas do que o que se comporta às escalas mais pequenas do Sistema Solar. Collett e a sua equipa descobriram que este não é muito provavelmente o caso, a menos que estas diferenças ocorram apenas a escalas maiores que 6000 anos-luz.
“O Universo é um lugar espantoso, dando-nos acesso a estas lentes gravitacionais que podemos usar como laboratórios,” acrescenta o membro da equipa Bob Nichol da Universidade de Portsmouth. “É extremamente satisfatório usar os melhores telescópios do mundo para desafiar Einstein e descobrir que afinal ele tinha razão.”
Fonte (transcrição): ESO
Fonte adicional: Space Telescope
Últimos comentários